Variable Resistance Training With Deadshifts and Deadlifts

Why you need to push past the limits of a barbell by using variable deadlifts and deadshifts.

By Derrick Price, MS
Jun 20, 2019

It’s 2 a.m. Your 3-month-old son is screaming at the top of his tiny lungs, waking up everyone in the household. Begrudgingly, you get out of bed and zombie-walk over to your son’s crib in the next room. Your body aches, you haven’t slept in days, and now you must bend over to pick up a squirming child in the dead of night. Unfortunately, your son’s not a great strength coach and doesn’t allot enough warmup time to prepare your body for a deadlift. You bend awkwardly over the edge of the crib, grab the 12-pound mass to lift him up—and zap! Your lower back spasms, vise-gripping your spine and bringing you to the floor in agony.

In the gym, you can deadlift over 300 pounds. What’s going on here? Simple: When you lift your relatively light son out of his crib, your body can’t tolerate the demand. This is a great lesson on the SAID Principle (Specific Adaptation to Imposed Demands). During a workout, we deadlift repetitively in the same bilateral stance, lifting as much mass as possible to thigh/hip height. The problem is that our life and sporting endeavors rarely require lifting a maximal load in the classic gym motion. By contrast, we often need to lift—or shift—light loads from odd positions to accomplish various everyday tasks. The key word is “various”: Sometimes our training doesn’t match the variables that life throws at us.

In this article, we’ll define what a deadlift is and address the need for variable lifting. We’ll also introduce the deadlift’s forgotten cousin—the deadshift—and show how to integrate both movements into a well-rounded strength and conditioning program for life or sport performance.

Defining Deadlifts and Deadshifts

As a strength coach or personal trainer, you probably think of deadlifting as tugging a really heavy barbell up off the ground to hip height before putting it back down or dropping it before your next rep. This multijoint, compound strength exercise has numerous science-supported benefits:

  • high recruitment of type II muscle fibers, based on Henneman’s size principle (Henneman, Somjen & Carpenter 1965; Kompf & Arandjelovic┬┤ 2017)
  • posterior-chain strength (hamstrings, glutes, erectors) (Camara et al. 2016; Bezerra et al. 2013)
  • quadriceps strength and core stability (Hamlyn, Behm & Young 2007)
  • metabolic stress, stimulating muscle-building hormones like human growth hormone and testosterone (Rietjens et al. 2015; Kraemer & Ratamess 2005)
  • enhanced coordination to safely pick up mass off the ground (Vecchio, Daewoud & Green 2017)
  • improved power and vertical jump performance (Camara et al. 2016)

But why call it “deadlifting”? Well, “dead” represents the inertia of a resting mass (remember, a mass at rest wants to stay at rest). “Lifting” means moving a stationary mass up and down relative to gravity. Thus, deadlifting overcomes the inertia of a resting mass to move it up and down. Deadshifting, by contrast, means moving a stationary mass horizontally, through a field of gravity, perpendicular to and away from the body’s midline.

Defining deadlifting (and deadshifting) gets us only so far: It doesn’t tell us how much to lift, what position to lift from, how high to lift or at what speed. This means we’re free to vary lifts to challenge the body in all sorts of ways. Picking up a really heavy barbell should be included in a strength protocol. But just as important is picking up variable masses from variable postures and moving those masses to various heights and at various speeds (Piper & Waller 2001).

Variable Deadlifting

Barbells, dumbbells and kettlebells provide convenient ways to lift large masses. However, you can probably attest that, on moving day, lifting a large box or your couch is anything but convenient (even when the item is light). On such occasions, we’re not only lifting objects with unique shapes, but we’re in odd postures that we typically don’t assume when training in the gym.

Moving a mass outside the gym requires resiliency—the capacity to tolerate the unique demands of everyday tasks. Whether we’re picking up a child, lifting furniture or simply grabbing our clothes off the floor, we need variable deadlifting exercises to train our bodies to become more resilient. So how does the body become more resilient through exposure to variable training stimuli? Two main factors come into play: a smart nervous system and tissue tolerance.

A Smart Nervous System

A nervous system exposed to variable motor tasks develops motor intelligence. With repeated exposure to a motor task done multiple ways, the nervous system learns how to coordinate the task in the safest, most efficient way—even with all of the task variations that may occur (Stergiou, Harbourne & Cavanaugh 2006; Hikosaka et al. 2002).

In other words, motor intelligence prepares you to perform a task in many different ways. If you’re that parent who threw out your back picking up your son, the problem may have been that you learned only one way to deadlift: holding a convenient object (the barbell) close to the body and lifting it from the same posture/stance. Introducing variable deadlifting patterns can make you more coordinated and resilient—and more likely to avoid 2 a.m. back strain.

For more information, safety considerations and actual exercises, plus a full reference list, see “Variable Deadlifts & Deadshifts” or the May 2019 print edition of Fitness Journal. If you cannot access the full article and would like to, please contact the IDEA Inspired Service Team at 800-999-4332, ext. 7. You can also view exercises of the videos in the online article.

Avatar

Derrick Price, MS

Derrick Price MS, CPT, PES, CES has been active on many levels in the fitness industry for over 8 years. He holds a MS in Exercise Science and Health Promotion with an emphasis on injury prevention and performance enhancement from the California University of Pennsylvania where he has also spent time as an Adjunct Faculty member teaching courses in Exercise Program Design. Aside from personal training at the acclaimed Function First in San Diego, CA, Derrick also is a Master Trainer for ViPR, Technogym, Core-Tex and Power Plate. He began his educational career as a Master Instructor for the National Academy of Sports Medicine and has since moved on to become a Faculty Member for the Personal Training Academy (PTA) Global. Derrick currently resides in San Diego with his wife Laura where they enjoy many outdoor activities such as hiking, golf, disc golf and a variety of other sports

Leave a Comment