

High Octane Fueling Pre- and Post-exercise Nutrient Timing

Developed by:

Fabio Comana, MA., MS. NASM CPT, CES, PES, CNC, & CSNC; ACE CPT & HC; ACSM EP; CSCS; CISSN

Engage.. Ignite.. Empower..©

Agenda ...

110-minutes:

- 1. Protein Quality, DIAAS and importance of leucine for muscle protein synthesis (MPS).
- 2. Protein needs for exercising individuals.
- 3. Fluid and hydration.
- 4. Pre-exercise strategies protein and hydration.
- 5. Peri-exercise strategies protein and hydration.
- 6. Post-exercise strategies protein and hydration.

Unfortunately, carbohydrate, fat, and supplement discussion will be omitted due to time constraints.

Introduction ...

A Food-first Approach:

- Nutritional strategy utilizing whole foods to 1st address poor nutritional intake before dietary supplementation.
 - Protein powders are complementary (v. supplementary) example of kcal
 - Safety LGC and NSF

Food Source	Pro (g)	Kcal	Food Source	Pro (g)	Kcal
Dairy – skim (2 x 8 oz.)	16	180	Dairy – skim (2 x 8 oz.)	16	180
Chicken breast (2 x 3oz.)	48	350	Chicken breast (1 x 3oz.)	24	175
Fish (salmon) (1 x 3oz.)	20	200	Fish (salmon) (1 x 3oz.)	20	200
Quinoa (1 cup)	22	640	Quinoa (¹ /2 cup)	11	320
Lentils – boiled (1 cup)	18	230	Grains (2 servings)	6	160
Grains (4 servings)	12	320	Vegetables – raw (2 cups)	6	80
Vegetables – raw (2 cups)	6	80	Good protein powder	59	275
Tota	al: 142g	2,000	Total:	142g	1,390

Informed-Choice (LGC Labs)

National Sanitation Foundation (NSF International)

Quality assurance for sports nutrition products – certify supplements/raw materials are free of banned substances.

Supplement testing, inspection, and certification – ensure product/ingredient safety (GMP) and test for banned

substances.

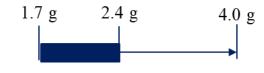
Protein Quality ...

Protein Quality

- Never limit protein selection to food labels alone no insight of AA absorbability.
- Digestible Indispensable Amino Acid Score (DIAAS)

Protein Source	DIAAS	Protein Source	DIAAS
Whole milk (and powders)	1.14-to-1.43	Pea concentrate	0.82
Whey protein isolates	1.09-to-1.25	Sunflower seeds	0.67
Whey protein concentrates	1.10-to-1.22	Peas (cooked)	0.58-to-0.64
Whole egg / Pork	1.13-to-1.18	Rice (cooked)	0.37-to-0.59
Beef	1.11	Tofu	0.52
Casein	1.09	Kidney beans / Black beans	0.51
Chicken	1.08	Barley	0.47-to-0.51
Fish (Tilapia)	1.00	Peanut butter / Corn	0.46-to-0.47
Soy isolate	0.90-to-1.00	Wheat / Rye / Peanuts	0.40-to-0.43
Pea isolate	0.95	Almonds / Rice protein concentrate	0.37-to-0.40
Oatmeal / rolled oats	0.84	Corn-based cereal	0.01
Chickpea	0.84	Hydrolyzed collagen*	0.00

*Hydrolyzed collagen = 0.00 because it contains no Tryptophan and is very low in methionine.


Reference: Phillips SM, (2017). Current concepts and unresolved questions in dietary protein requirements and supplements in adults. *Frontiers in Nutrition*, 4:13.

Protein Quality ...

Leucine Threshold (LT) and MPS

- Evidence indicates leucine triggers MPS following consumption activation of mTOR (mammalian target of rapamycin).
 - mTOR = enzyme regulating cellular processes in muscle fibers, it coordinates chemical signals initiating exercise-induced MPS.
 - \circ mTOR = critical for early post-exercise phase of MPS (~6 hours).
- For optimal MPS, intracellular levels of leucine (Leu) need to reach threshold.
 - \circ Leucine in isolation \neq build muscle
- LT influencers:
 - Lowered with resistance training.
 - Elevated with aging and inactivity.

- 1. Goodman C A, Mayhew D L, and Hornberger TA, (2011). Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. *Cellular Signaling*, 23(12):1896-1906.
- 2. Pasiakos SM, (2012). Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass. *Nutrients:* 4(7):740-758.
- 3. Atherton P J, Kumar V, Selby A L, et al., (2017). Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. *Clinical Nutrition*, 36(3):888-895.
- 4. Devries MC, McGlory C, Bolster DR, et al., (2018). Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women. *Journal of Nutrition*, 148(7):1088-1095.

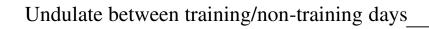
Protein Quality ...

Leucine Levels (per 100g serving)

AA (g/100g Protein)	Whey Isolate	Milk (skim)	Egg White	Pea Isolate	Egg	Soy Isolate	Fish (Salmon)	Brown Rice
Leucine – BCAA	(10.23)	9.80	8.37	(10.42)	8.53	8.11	8.40	8.29
Isoleucine – BCAA	6.67	6.06	6.00	4.70	5.43	4.84	4.76	4.24
Valine – BCAA	5.68	6.71	6.31	4.96	6.10	5.07	5.32	5.88
Total:	22.58	22.57	20.36	20.08	20.06	18.02	18.48	18.41

AA (g/100g Protein)	Beef	Chicken	Amaranth	Quinoa	Potato	Chia	Hemp
Leucine – BCAA	8.25	8.02	6.08	6.00	6.16	3.20	3.25
Isoleucine – BCAA	4.72	4.80	4.03	3.61	4.23	4.17	2.69
Valine – BCAA	5.17	5.17	4.70	4.51	3.25	5.30	2.36
Total:	18.14	17.99	14.81	14.12	13.64	12.67	8.30

Protein Quantity ...

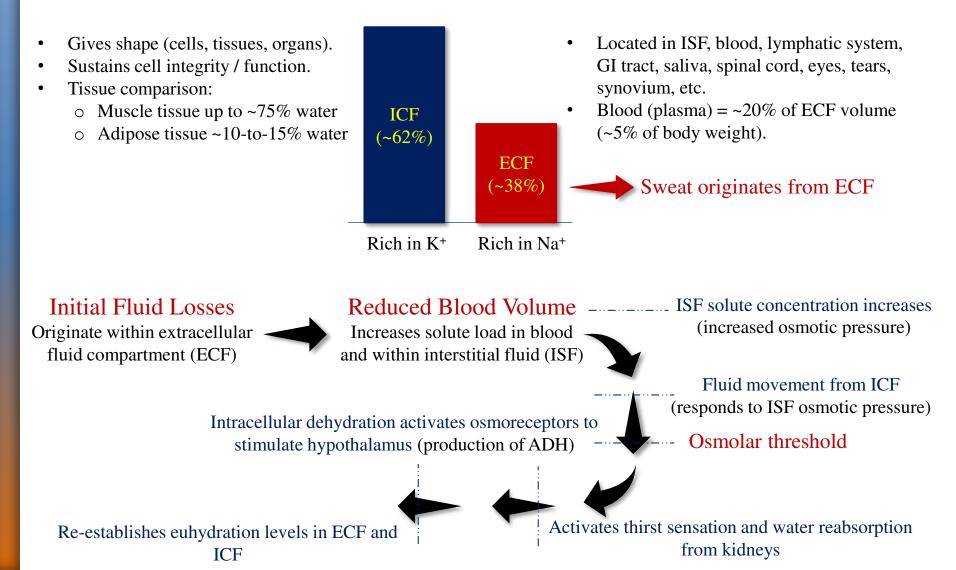

Do Athletes/Athletic Individuals More Protein?

Position Statements – Quantity (Complied from AND, JDC, ACSM, NSCA, ISSN):

Activity Level	Type of Exercise	Protein	Needs
		(g/kg BW)	(g/lb. BW)
None	N/A	RDA (0.8g/kg)	RDA (0.36g/lb.)
Light-to-moderate	Cardiopulmonary Training	1.2-to-1.4g/Kg	0.55-to-0.64g/lb.
Light-to-moderate	Resistance Training	1.5-to-2.0g/Kg	0.68-to-0.91g/lb.
Moderate-to-vigorous	Endurance Training*	1.5-to-2.0g/Kg	0.68-to-0.91g/lb.
Moderate-to-vigorous	Resistance Training	1.7-to-2.2g/Kg	0.77-to-1.00g/lb.
Upper Tolerance believed to b	e approximately 2.0-to-2.2 g/Kg (0.91	-to-1.00 g/lb.) **	

* Sport-specific training or > 10 hours of vigorous weekly exercise.

** Belief that excesses cannot be utilized by body – converted to glucose or fats.


Men	Women
Range = 25 -to- $30g$ per meal	Range = 15-to-20g per meal
Upper threshold: ~50g	Upper threshold: ~30g

Reference: Pencharz PB, Elango R, and Wolfe RR, (2016). Recent developments in understanding protein needs - How much and what kind should we eat? *Applied Physiology, Nutrition, and Metabolism*, 41(5):577-580. doi:10.1139/apnm-2015-0549.

Fluid and Hydration

• Total body water averages approximately 45-to-75% of a person's body weight.

Fluid and Hydration

Dehydration: Concern with exercise – most people don't strategize to maintain hydration levels during prolonged/vigorous exercise or fail to rehydrate adequately post-exercise.

General Day-to-day Hydration Recommendations

- U.S. National Academies of Sciences and World Health Organization:
 - 3,700 mL/day total for males. Deduct 20% for food sources. Ο
 - 2,700mL/day total for females. Ο
- More for active individuals/hot environments.
- Drink fluids in an obligatory fashion = Euhydration (optimal body water). Ο

Other Recommendations:

- American College of Sports Medicine: 30-to-40 mL/kg or approximately 0.50-to-Ο 0.60 oz./lb.
- 50% of bodyweight in oz. + 16 oz./hour of exercise.

Guideline	Method
30-to-40 mL/kg	Example: A 150 lb. (68.2 Kg) = 2,046-to-2,728 mL (approx. 70-to-90 oz.) of fluid daily.
Fluid (oz.) = $BW \div 2$	Example: A 150 lb. (68.2 Kg) person should ingest 2,218 mL (75 oz.) of fluid daily.

Monitoring Hydration – General (day-to-day)

Urine Specific Gravity (USG)	Consistent Urine Color* (and volume)
Measures solute concentration in urine in 1 st	Consistent, larger volumes during first morning void with
morning urine sample via light refraction v.	lemonade color = euhydration
light refraction through water	Consistent, smaller volumes excreted during first morning void
Normal range: < 1.024 with higher values	with apple juice/iced tea color = dehydration
used as a dehydration marker.	Similar application throughout the day
Armstrong Urine Color Chart	Score Dehydration Level

Score	Dehydration Level
1-to-2	Well-hydrated – equivalent to $< 1\%$ loss in BW.
3-to-4	Minimal dehydration – equivalent to 1-to-3% loss in BW.
5-to-6	Significant dehydration – equal to 3-to-5% loss in BW.
> 6	Severe dehydration – equivalent to > 5% loss in BW.

- Chart has higher correlation to USG and urine osmolality in younger adults.
- Lacks validity in older adults.

* Exceptions:

- B-vitamins, betacyanins (dark red vegetables pigments beets), high protein intakes and artificial food color discolor urine (7-day wash-out, normal fluid intake, observe urine color).
- Medications (e.g., diuretics) consistently increase urine volume lighten urine color.

Monitoring Hydration – General (day-to-day)

- To detect baseline hydration status, record morning body weight after making voids over a 3-day period
 - Use a change exceeding a 1% decrease from the 3-day body-mass average as a marker of hypohydration*.
 - Urinating ~3-hours during day = good general indicator of hydration.

* Strategy only applies to those not trying to lose or gain weight.

Reference: Cheuvront SN, Carter R, Montain SJ, and Sawka MN, (2004). Daily body mass variability and stability in active men undergoing exercise-heat stress. *International Journal of Sport Nutrition and Exercise Metabolism*, 14(5):532-540.

Energy Balance ...

Low Energy Availability In Athletes

Energy availability (EA): Amount of dietary energy available to sustain physiological function after subtracting the energy cost of exercise.

- Insufficient EA, often attributed to increased exercise, reduced energy intake, or some combination = physiological disruptions
- Often evident in female athlete triad and RED-S.

<u>Total Energy Intake – Exercise Energy Expenditure</u>

Score	Male	Female	Notes
High	> 40	> 45	Maintenance or weight gain
Optimal	40	45	Maintenance and normal physiological function
Sub-optimal	30-to-40	30-to-45	Suggested for short-term weight loss
Clinical	< 30	< 30	Unhealthy – potential physiological impairments

Fat-free Mass (kg)

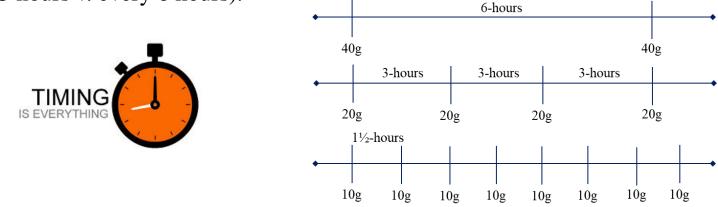
- Logue D, Madigan SM, Delahunt E, et al., (2018). Low energy availability in athletes: A review of prevalence, dietary patterns, ⁴ physiological health, and sports performance. *Sports Medicine*, 48(1):73-96.
- Areta JL, Taylor HL, and Koehler K, (2021). Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. *European Journal of Applied Physiology*, 121(1):1-21.

Energy Balance ...

Energy Balance

- 20% energy deficit can reduce MPS rates by 20% v. to caloric maintenance
 - Energy deficit of 500 calories/day can reduce MPS rates by 27%.
 - Negative effects exacerbated by increased protein use for energy production with hypocaloric diets.
- Higher protein intakes (with hypocaloric diets) help preserve muscle mass.
 - o 1.6-to-2.2g/Kg (0.73-to-1.0g/lb.) for sedentary and recreational exercisers.
 - 2.2-to-3.4g/kg (1.0-to-1.5g/lb.) for experienced exercisers and athletes.

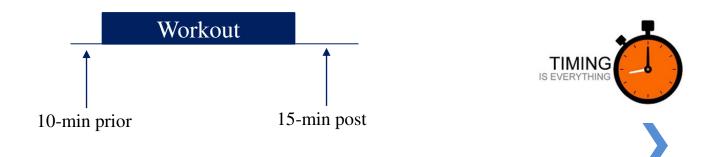
- 1. Pasiakos, SM, Vislocky LM, Carbone JW, et al., (2010). Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. *The Journal of Nutrition*, 140(4):745-751.
- 2. Areta JL, Burke LM, Camera DM, et al., (2014). Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. *American Journal of Physiology. Endocrinology and Metabolism*, 306(8):E989-997.
- 3. Simmons E, Fluckey JD, and Riechman SE, (2016). Cumulative muscle protein synthesis and protein intake requirements. *Annual Review* of Nutrition, 36:17-43.
- 4. Cava E, Yeat NC, and Mittendorfer B, (2017). Preserving Healthy Muscle during Weight Loss. Advanced Nutrients, 8(3):511-519.
- 5. Stuart CA, Shangraw RE, Peters EJ, and Wolfe RR, (1990). Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. *American Journal of Clinical Nutrition*, 52:509-514.
- 6. Weinheimer EM, Sands LP, and Campbell WW, (2010). A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. *Nutrition Reviews*, 68:375-388.
- 7. Mettler S, Mitchell N, and Tipton KD, (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. *Medicine and Science in Sports and Exercise*, 42(2):326-37.
- 8. Pasiakos SM, Cao JJ, Margolis LM, et. al., (2013). Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. *The FASEB Journal*, 27(9):3413-3885.


Nutrient Timing ...

Nutrient Timing: Protein

Compare muscle protein rates over a 12-hour period with whey protein:

- 4x20g servings was superior v. 2x40g or 8x10g spread evenly over day.
 - Results:
 - 10g servings failed to reach LT (threshold) did not stimulate MPS optimally.
 - 20g and 40g reached threshold, but 4-servings did so more frequently (i.e., every 3 hours v. every 6 hours).


- 1. Areta JL, Burke LM, Ross ML, et al., (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. *The Journal of Physiology*, 591(Pt 9):2319-2331. doi:10.1113/jphysiol.2012.244897.
- 2. Schoenfeld BJ, Aragon AA, and Krieger JW, (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. *Journal of the International Society of Sports Nutrition*, 10(1):53. doi:10.1186/1550-2783-10-53.
- 3. Mamerow MM, Mettler JA, English KL, et al., (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. *Journal of Nutrition*, 144(6): 876-880.

Nutrient Timing: Protein

Consuming protein before exercise can attenuate muscle catabolism during exercise and promote protein synthesis after exercise:

- Study Design: 1st visit 1RM testing (squat) on strength/power athletes (n=15).
 - 2nd-through-4th visits: Training (4 sets x 10 POF) for deadlifts, squats, lunges with 24-hour recovery periods.
 - Whey protein (42 g) administered 10-min prior or 15-min post-exercise v. placebo.
 - Results:
 - No differences in 1RM performances between pre- and post-feeding.
 - Both showed equal recovery rates 24- and 48-hour post-exercise.

References: Hoffman J, Ratamess N, Tranchina C, et al., (2008). Effects of a pre- and post-exercise whey protein supplement on recovery from an acute resistance training session. *Journal of the International Society of Sports Nutrition*, 5(P6).

Nutrient Intake – Protein Recommendations

• Consensus:

 \circ Target 0.25-to-0.4 g/Kg (0.11-to-0.18g/lb.) per feeding = 20-to-40g.

20g quality protein = optimal MPS; increasing to 40g = 10-to-20% further increase in MPS.

10g 20g 30g 40g

• Consume good quality protein every 3-to-4 hours when awake = \geq 4 meals/day.

- Protein distributed throughout day = 25% greater MPS v. back-ended or frontended (e.g., think 16-8 fasting-type programs).
- Pre-, intra-, and post-workout protein consumption not needed if adequate protein ingested 1-to-3 hours prior to training.
- Consume slow protein (~30-to-40 g) before sleep acutely increase MPS and metabolic rates throughout night without influencing lipolysis.

- 1. Aragon A, and Schoenfeld BJ, (2020). How much protein can the body use in a single meal for muscle building? Implications for total protein distribution. *Journal of the International Society of Sports Nutrition*, 15(1).
- 2. Kerksick CM, Arent S, Schoenfeld BJ, et al., (2017). International Society of Sports Nutrition position stand: nutrient timing. *Journal of the International Society of Sports Nutrition*, 14:33.
- 3. Moore DR, Churchward-Venne TA, Witard O, et al., (2015). Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. *Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences*, 70(1):57-62.

General Fluid Guidelines (NATA, ACSM, AND)

- 1. An important goal is to establish normal sweat-loss volumes for the individual during a typical workout helps strategize to avoid dehydration.
 - Protocol: Measure pre- and post-exercise weights (dry-naked, voided) + the volume consumed during the workout to determine total water losses (sweat rate).
 - *Example:* Pre-exercise weight = 145 lbs. and post-exercise weight = 142 lbs.
 - Weight loss = 3 lbs. or 2.1% of body weight and ingested fluid in workout = 16 oz.
 - Total fluid lost per hour = 3 lbs. (48 oz.) + 16 oz. ingested = total of 60 oz. (1.77 L).
- 2. General guideline (essential if projected weight loss > 2-to-3%):
 - Consume an extra 500 mL of water 2-to-3 hours before bedtime allows time for urine removal (average adult kidney filtration rate = 0.5-to-1.5 mL/kg/hour).
 - Consume 500 mL 2-to-3 hours before exercise.

- 1. Sawka MN, Burke LM, Eichner ER, et al., (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. *Medicine and Science in Sports and Exercise*, 39(2):377-390. doi:10.1249/mss.0b013e31802ca597.
- 2. Sawka MN, and Noakes TD, (2007). Does dehydration impair exercise performance? *Medicine and Science in Sports and Exercise*, 39(8):1209-1217. doi:10.1249/mss.0b013e318124a66400005768-200708000-00001 [pii].
- 3. Academy of Nutrition and Dietetics, (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. *Journal of the Academy of Nutrition and Dietetics*, 116(3):501-528.

General Fluid Guidelines (NATA, ACSM, AND)

- 3. Avoid having individuals engage in any exercise if they experience extreme thirst or have extremely dark urine (urine color 4+).
- 4. Recognize that water is NOT the only beverage to improves hydration.
 - Any beverage, excluding those with alcohol percentages > 4% can increase total body water.
 - Caffeine is also miscast as a diuretic, but habitual consumption of caffeine and exercise negate its diuretic effect.

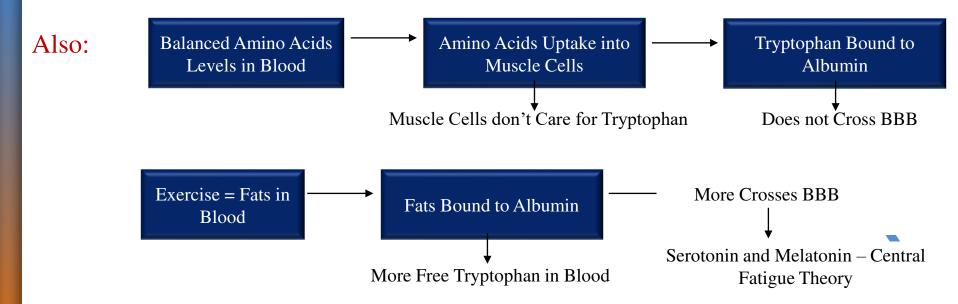
Sequence	Strategies (takeaway)
Step One	• Drink water in an obligatory fashion beginning 24-hours prior to training.
	• Unless on medications, vitamins or high protein intakes – use urine color.
Step Two	Follow previous recommendations:
	• 500 mL 2-to-3 hours before exercise.
	• 5-to-10 mL/kg BW (~3-to-5 mL/lb.) 2-to-4 hours before exercise.
	National Athletic Trainers Association (NATA):
	• Consume 17-to-20 oz. (500-to-600 ml) of water or sports drink 2-to-3 hours pre-exercise.

Protein Intake

- Protein consumption during exercise is generally advised for endurance-type events > 2 hours (i.e., moving towards glycogen depletion).
 - Consuming small quantities of protein/amino acids can limit muscle breakdown as it serves as a fuel substrate.
 - Can also reduce muscle soreness and accelerate muscle recovery.
 - Can provide some psychological benefits (i.e., central theory of fatigue).

Central Theory of Fatigue (CTF):

- Serotonin linked with fatigue* (role in sleep, lethargy, drowsiness + motivation losses) through conversion to 5-hydxoytryptophan (5-HT) and melatonin.
 - During exercise / prolonged fasting, CNS uptake of tryptophan increases.
 - Tyrosine (dopamine precursor) and BCAAs use same transporter mechanism to pass through blood-brain barrier (BBB)
 - Plasma concentration ratios of these amino acids are therefore important markers of neurotransmitter synthesis.


* Increased levels of dopamine and norepinephrine favor motivation, arousal, and reward. 5-HT remains high at fatigue v. dopamine falls at exhaustion.

Protein Intake and Fatigue

Updated premise to CTF*:

- Increased serotonin-to-dopamine ratio = causes tiredness and lethargy.
- Decreased ratios favor improved performance preserve motivation and arousal.
 - Adding BCAAs (and tyrosine) elevate dopamine and norepinephrine levels may also help reduce 5-HT synthesis.
 - Both may positively influence perceived exertion and measures of mental performance.

* Fatigue also directly influenced by other parameters (e.g., glycogen depletion,, elevated core temperature, and elevated circulating free fatty acids.

1 oz. = 29.57 ml

Protein Intake – BCAAs During Exercise

	Endurance Athlete	Resistance Athlete
Physical Performance	Possibly – lacking strong evidence	Some evidence of faster recovery and less muscle soreness – potentially improved performance.
Psychological Performance	Lower RPE and mental fatigue	No significant evidence

• Intakes:

- 1-to-2% protein is adequate for intra-workout endurance purposes.
 - 5 grams of protein/BCAA in an 8 oz. serving $(240 \text{ mL}) = (5 \div 240) \times 100 = 2.1\%$.
- Resistance Training: BCAA dosages range between 3¹/₂-to-6g per serving
- Up to 2-to-4 servings per hour = \sim 7-to-25g per hour.
- Usually mixed with carbohydrates (provides palatability, some improved uptake into cells for fuel): 2:1 to 4:1 CHO-pro ratios.

- 1. Bird SP, Tarpenning KM, and Marino FE, (2006). Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation. *Metabolism*, 55(5):570-577.
- 2. Greer BK, Woodard JL, White JP, et al., (2007). Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. *International Journal of Sport Nutrition and Exercise Metabolism*, 17(6):595-607.
- 3. Koopman R, Pannemans DL, Jeukendrup AE, et al., (2004). Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. American Journal of Physiology-Endocrinology and Metabolism, 287(4):E712-E720.
- 4. Saunders MJ, (2007). Coingestion of carbohydrate-protein during endurance exercise: influence on performance and recovery. *International Journal of Sport Nutrition and Exercise Metabolism*, 17(Supplement 1), S87-S103.

General Hydration Strategies During Exercise

Exercise Duration	Strategies
Events ≤ 60 minutes	 Water is all that is needed (assuming a balanced diet and pre-exercise euhydration) unless: High-intensity exercise. Extreme environments / profuse sweating. Dehydrated and fasted (improper preparation).
Events 60-to-90 minutes	• Fluid and electrolyte replacement are most important with carbohydrate replacement needed to a lesser extent.
Events 90-to-120 minutes	• Require fluid, electrolyte and carbohydrate replacement.
Events \geq 120 minutes	 Require fluid, electrolyte, more complex-carbohydrate replacement. Consideration inclusion of BCAA (Branched Chain Amino Acids) as glycogen stores become depleted.

Sweat rates vary during exercise (0.3-to-2.4 L/hour).

- Make fluids freely accessible if sweat losses reach 2-to-3% BW under this level, no formal hydration strategy is really needed.
- How much fluid is needed?
 - Recommendation of 7-to-10 oz. (200-to-300 ml) of fluid 10-to-20 min.

Reference: Academy of Nutrition and Dietetics, (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. *Journal of the Academy of Nutrition and Dietetics*, 116(3):501-528.

Hydration During Exercise

- What kind of fluid is needed?
 - Carbohydrate concentration is important with any beverage
 - Needs to \leq 6-to-8% carbohydrate solution why?
 - Higher concentrations impede gastric emptying rates and absorption.

Carbohydrate	Fluid volume	Concentration	
14 grams	8 oz. serving (240 ml)	$14g \div 240 = 0.058 (x100) = 5.8\%$	
Brand	Ingredients	Concentration	
Power Gel	63% maltodextrin, 27% fructose	27g per 40g (1.4 oz.) package (67.5%)	
Hammer Gel90% maltodextrin, 10% sugars		21g per 33g (1.2 oz.) package (63.5%)	

Example of managing fluid needs:

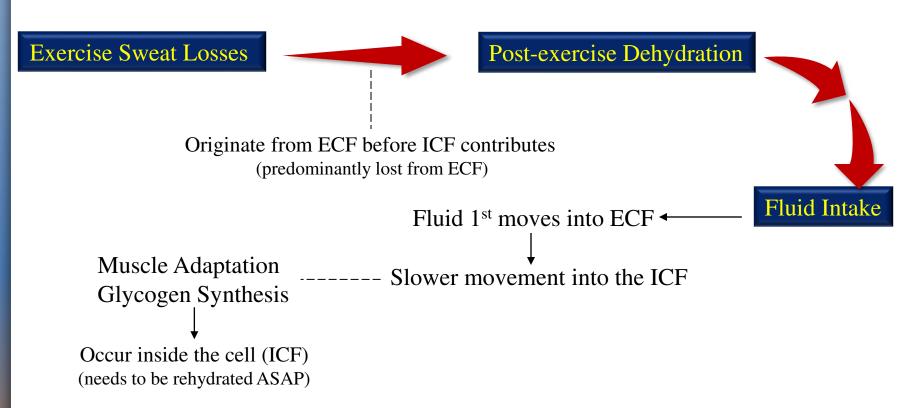
Male Exerciser (2 hours of exercise)					
Pre – Post-exercise Weight: = 5 lbs. (2.3 Kg)	Say % body weight loss is 2.6%				
Fluid Consumed During Exercise: 8 oz. (240 mL) every 15 minutes = 32 oz. per hour or 64 oz. total.					
How do we correct this problem if the goal is to maintain dehydration under 2%?					
• Need to reduce overall fluid loss to $< 2\%$ – for example, this might change weight loss to 3.9 lbs. (1.8 Kg).					

• Differential of 1.1 lbs. (18 oz.) = current fluid intake of 32 oz./hr. + additional 9 oz./hr. = 41 oz./hr. (1,212 mL/hr.)

Protein Intake Following Exercise

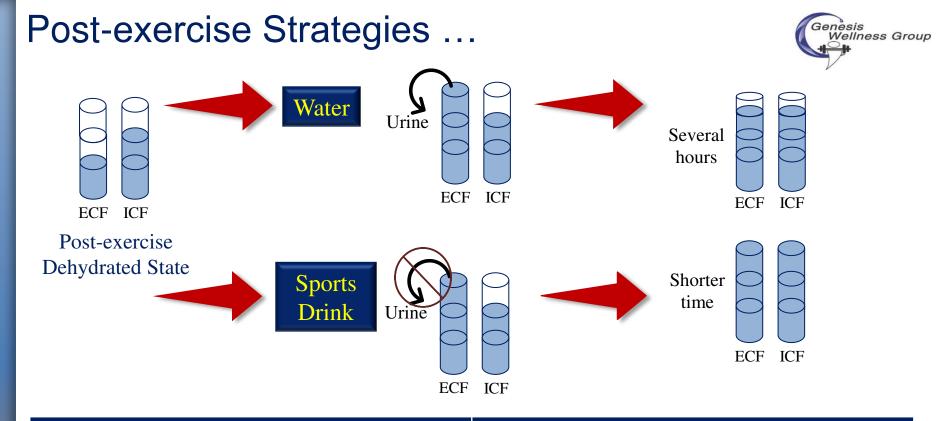
- Protein included with carbohydrates (3:1-to-4:1 carbohydrate-protein ratio) can accelerate muscle glycogen replenishment.
 - Relevant for endurance athletes and individuals training with high frequency.
- Resistance meta-analysis = no statistically significant effects of post-workout protein v. frequent protein feedings throughout day (if total intake is equal).
 - Exceptions:
 - If post-workout protein consumption increases total daily protein intake MPS can be enhanced.
 - In resistance-trained individuals post-workout protein further elevates MPS.

- 1. Aragon AA, and Schoenfeld BD, (2013). Nutrient timing revisited: is there a post-exercise anabolic window? *Journal of the International Society of Sports Nutrition*, https://doi.org/10.1186/1550-2783-10-5.
- 2. Schoenfeld BD, Aragon AA, and Krieger JW, (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. *Journal of the International Society of Sports Nutrition*, https://doi.org/10.1186/1550-2783-10-53.


Protein Intake Following Exercise

- Post-exercise Goal:
 - Ingest quality protein within 1st hour post-exercise best accomplished via fast Ο protein (e.g., whey isolate).
 - Dosage: 0.25-0.40 g/Kg of BM (0.11-to-0.18g/lb.) Ο
 - *Example:* 176-pound (80 Kg) person = 32 grams.
- Daily Strategy: •
 - Aim for \geq 4 protein feedings throughout day.

Six Feeding Interval Example (165 lb. or 75 Kg)		Event	Amount	Balance
Protein Needs for Day = $150g (2.0g/Kg body weight)$		Total Daily Requirement:	g	
• Morning (breakfast)	10g	Morning:	g	g
• Pre-workout	0.25-0.40g/Kg = 30g (fast protein)	Pre-workout:	g	g
• During 90-min workout	10g/hour BCAA = $15g$	During Workout:	g	g
• Post-workout	0.25-0.40g/Kg = 30g (fast protein)	Immediate Recovery:	g	g
• 3-to-4 hours post-ex	0.25-0.40g/Kg = 30g (meal)	3-4 hours Later:	g	g
-		Late Night:	g	g
• Before bed	20g (slow protein)	Remaining Balance:		nce:g
Subtotal = $135g$ (balance = additional $15g$)		Meal/snack allocation	g	


Post-exercise Rehydration

Wellness Group

Post-exercise Rehydration Strategy:

- How to **BEST** expedite ICF rehydration water or sports drink (electrolyte solution)?
- Water = slower (passive) rehydration response v. electrolyte solutions = more rapid (active) rehydration response.

Water

- Fluid 1st replenishes ECF (blood volume) this produces a blood-dilution effect.
- Replenished blood volume (BV) activates volume (pressure) receptors = shut-off thirst sensation.
- Excess fluids pass to urine (clear-to-lemonade color).
- What follows is a passive fluid shift to replace lost ICF volume which lowers BV and re-stimulates thirst.
- Thirst-urination cycle can continue up to 6-to-10 hours.

Electrolyte Solution

- Same process activating volume receptors.
- Beverage concentration maintains or increases osmotic pressure (blood concentration).
- Volume receptors attempt to shut down thirst, but the osmoreceptors override (inhibitory effect).
- This stimulates water retention, maintains the thirst drive and lowers urine production.
- Rehydration is more rapid (within a few hours).

Post-exercise Rehydration Guidelines

Relevant to:

- Individuals losing \geq 2-to-3% weight loss.
- Individuals who need to rehydrate rapidly due to training frequency (e.g., < 12-hours).
- Individuals exercising in hot, humid environments.
- Individual seeking to optimize training adaptations (e.g., MPS).

Which Solution?

- With water rehydrate with volumes equal to 120-to-150% of lost body weight.
- With electrolyte solutions rehydrate with volumes equal to 100-to-125% of lost body weight.

Water ↓ Replace at 120-to-150% of lost body weight (16 oz. = 19-to-24 oz.)

Thank You..!!

For Your Commitment to Excellence

Name: Fabio Comana, MA., MS.

Credentials: NASM CPT, CES, PES, CNC & CSNC; ACE CPT & HC; ACSM EP; NSCA CSCS; CISSN. Email: comana.fabio@gmail.com

