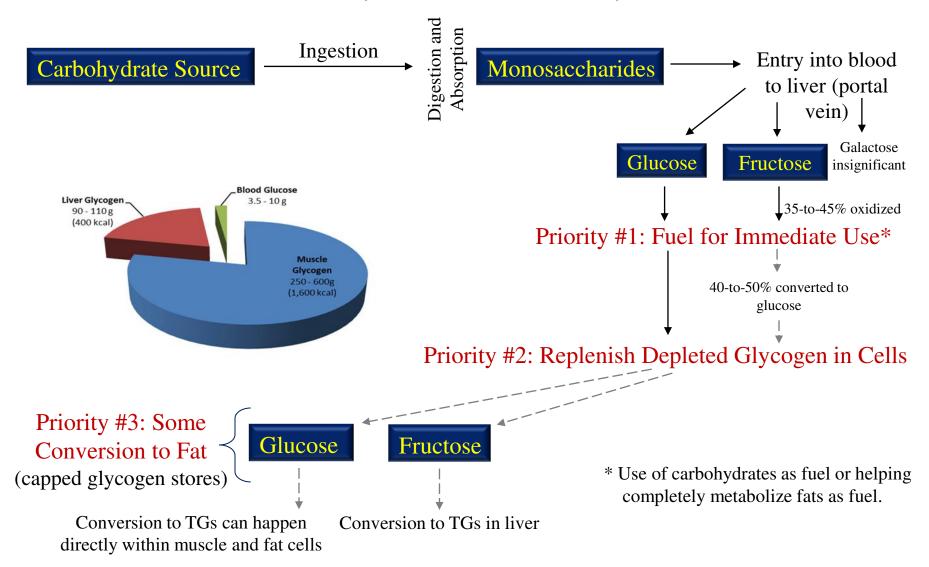


Aligning Diet and Exercise Ideas to Maximize Results

NASM CPT, CES, PES, CNC, CSNC & CWC; ACE CPT & HC; ACSM EP-C; CSCS; CISSN

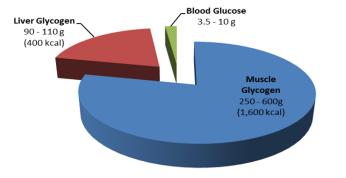
Engage.. Ignite.. Empower..©

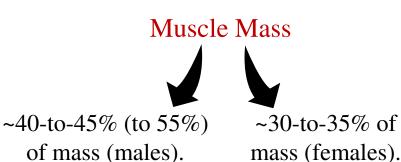
Agenda ...



110-minutes:

- 1. Carbohydrate Concepts in Exercise Science:
 - Carbohydrate storage in the body
 - Carbohydrate and fat utilization during exercise
 - Carbohydrate depletion
 - Fasted cardio
 - Carbohydrate needs of the body
- 2. Protein Concepts in Exercise Science:
 - RDA versus exercising needs
 - Protein needs and weight loss body composition changes
- 3. Diets, Macronutrient Composition and Exercise.
 - Low carbohydrate and low-fat diets
 - Low energy diets
 - Fasting-type diets.


Carbohydrate Roles in the Body



Reference: Sun SZ, and Empie MW, (2012). Fructose metabolism in humans – what isotopic tracer studies tell us. *Nutrition and Metabolism*, 9:89. https://doi.org/10.1186/1743-7075-9-89.

Carbohydrate Storage in the Body

Muscle:

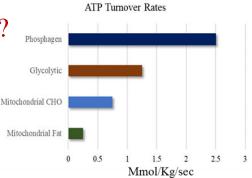
- Normal storage = 15g/Kg (6.8 g/lb.) of muscle tissue*.
- Equals ~250-to-600g (1,000-to-2,400 kcal).

Liver:

*Increased with carb-loading protocols (~5 days) or through endurance training.

- Normal storage = 50g/Kg (22.7g/lb.) of tissue.*
- Liver is between 1.5-and-2.5 Kg = \sim 75-to-125 grams (300-to-500 kcal).

Roles of carbs in muscle v. liver**


**Liver stores can deplete within 12-to-18 hours

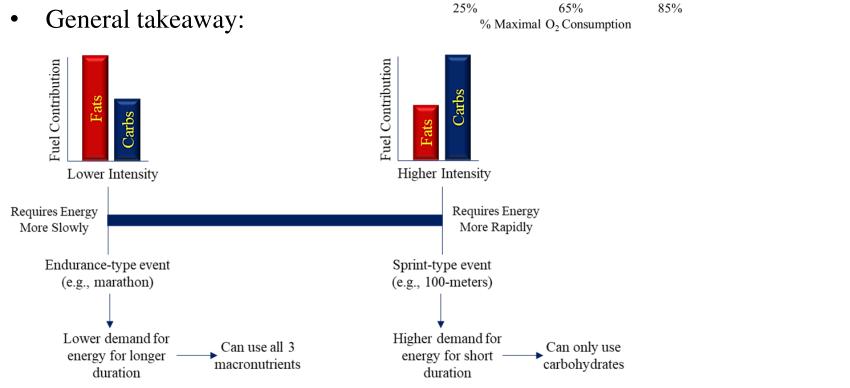
Reference: Janssen I, Heymsfield SB, Wang Z, and Ross R, (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 years. *Journal of Applied Physiology*, 89(1):81-88.

Carbohydrate Utilization v. Intensity

Why do we rely more upon carbohydrates at higher intensities?

- Key reasons include:
 - Faster rate of ATP production per unit of time v. fats.
 - $\circ~$ Carbohydrates are more efficient produce more ATP per O_2 molecule v. fatty acids
 - Glucose = $6.0 \text{ ATP per } O_2 \text{ molecule}$
 - Palmitic acid = $5.6 \text{ ATP per } O_2 \text{ molecule}$.
 - Greater reliance upon type 2 muscle fibers more anaerobic (i.e., glucose dependent).
 - Greater circulating levels of epinephrine at higher intensities = faster glycogenolysis rates in liver = more glucose release to the blood.
 - Epinephrine stimulates glycolysis in muscle tissue.

Carbohydrate Utilization v. Intensity


Why do we rely more upon carbohydrates at higher intensities? (cont.)

- Greater glucose uptake into muscle cells v. rest due to uptake pathway:
 - NIMGU when insulin is suppressed under SNS activation.
 - Muscle contraction moves glucose receptors to the outer cell wall to increase glucose uptake rates independent of insulin.
- Increased ATP breakdown increases H⁺ concentration
 - Changes cell ph.
 - Inhibits carnitine acyltransferase (CPT1) slows free fatty acids (FFA) transport to mitochondria.

- 1. Pocari J, Bryant, CX, and Comana, F (2015). *Exercise Physiology*. Philadelphia, PA. The FA Davis Company.
- 2. McArdle WD, Katch FI, and Katch VL, (2015). *Essentials of Exercise Physiology* (5th edition). Philadelphia, PA. Wolters Kluwer.
- 3. Kenney WH, Wilmore JH, and Costill DL, (2021). Physiology of Sport and Exercise (8th edition). Champaign, IL. Human Kinetics.
- 4. Haff GG, and Triplett NT, (2016). Essentials of Strength Training and Conditioning (4th edition). Champaign, IL., Human Kinetics.

Fuel Use – Intensity:

General takeaway:

Energy

Expenditure

Leisurely Walking

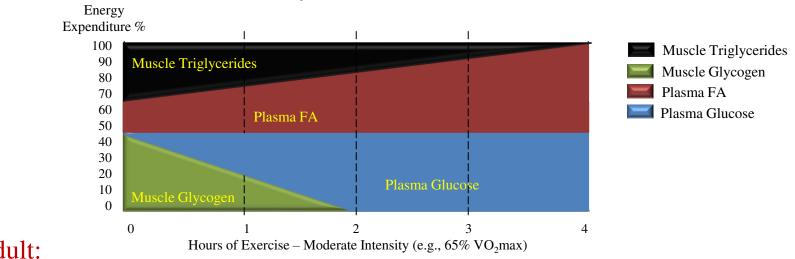
Muscle Glycogen

Plasma FFA

Plasma Glucose

Muscle TG (IMTAG)

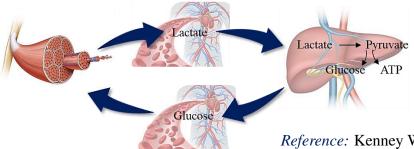
Jogging, Dancing Higher-intensity


aerobic exercise

Genèsis

Wellness Group

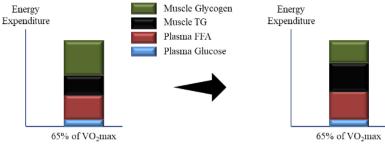
Reference: Romijn JA, Coyle EF, and Sidossis LS, (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, Endocrinology and Metabolism. 265(3):E380-391.



Fuel Use – Duration (moderate-intensity exercise)

Average Adult:

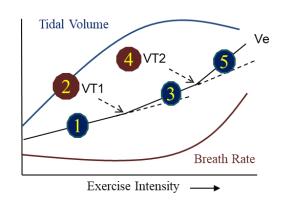
- Estimated burn rate = ~ 100 kcal/mile = total glycogen = ~ 20 miles.
- Muscle glycogen capacity = 90-to-120-minutes.
- Anaerobic Work:
 - Glycogen depletion = $\sim 40\%$ over 60-to-90-min of work ONLY!


Can account for ~50% of carbohydrates used by muscles during intense exercise when lactate is produced.

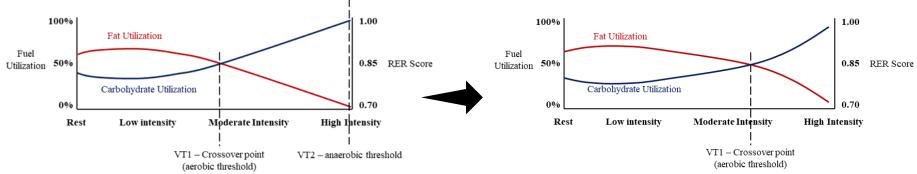
Reference: Kenney WH, Wilmore JH, and Costill DL, (2021). *Physiology of Sport and Exercise* (8th edition). Champaign, IL. Human Kinetics.

Can I Increase Fat Utilization Rates?

- 1. Macronutrient Composition:
 - Low-carb/high-fat diets change resting fat utilization rates.
 - Low-carb/high-fat diets change sub-maximal exercise fat utilization rates applicable to low-to-moderate intensity exercise.
- 2. Training Effect:
 - HIIT or SIT-type training = improvements in oxidative efficiency and fat utilization rates, but larger effects expected with longer (endurance-type) training regimens.
 - Concept of Quantity.



- 1. Atakan MA, Guzel Y, Shrestha N, et al., (2022). Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. *British Journal of Sports Medicine*, 56(17): 20:bjsports-2021-105181
- 2. Zajac A, Poprzecki S, et al., (2014). The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists. *Nutrients*, 6(7):2493-2508.
- 3. Burke LM, Whitfield J, Heikura IA, et al., (2021). Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. *Journal of Physiology*, 599(3):771-790.


Can I Increase Fat Utilization During Exercise?

- 2. Training Effect (cont.):
 - VT1 Training
 - Concept of Quality.

- 1. Continuous talking is easy.
- 2. Continuous talking is now challenging (VT1 or LT) true lactate threshold (> 2 mmol).
- 3. Continuous talking is becoming very uncomfortable.
- 4. Continuous talking is very difficult (VT2 or RCP).
- 5. Any talking is essentially impossible. Above VT2, we experience respiratory compensation = sharp increase in Ve.

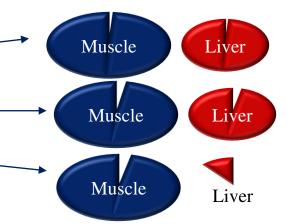
VT1 = a shift to glucose as the primary fuel; intensity = 5-to-7 out of 10; also known as marker of 'caloric quality' or 'aerobic threshold.'

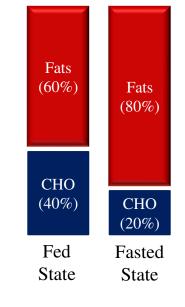
- 1. Atakan MA, Guzel Y, Shrestha N, et al., (2022). Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. *British Journal of Sports Medicine*, 56(17): 20:bjsports-2021-105181
- 2. Helge J, (2002). Long term fat diet adaptation effects on performance, training capacity, and fat utilization. *Medicine and Science in Sports and Exercise*, 34:1499-1504.
- 3. Spriet L, and Watt M, (2003). Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise. *Acta Physiol. Scand.*, 178:443-452.

Can I Increase Fat Utilization During Exercise – Fasted Cardio?

Dinner – Carbohydrates

- Muscle and liver glycogen filled.
- Evening activities bedtime.
- Overnight fast bodily functions:
 - Muscle v. liver roles.


Practice of Fasted Cardio – burn more fat.


- *Example:* 300 kcal per session
 - Fed State: 60% = 180 kcal v. Fasted State: 80% = 240 kcal
 - \circ 3,500 kcal = 1 lb. fat (requires 58 sessions).

But at what cost???

• Elevated cortisol:

- Promotes lipolysis.
- Increased gluconeogenesis from protein.
- \circ Suppressed metabolism (up to 20%).
- Elevated ketones can decrease serotonin and dopamine levels.

Macronutrient Needs of the Body ...

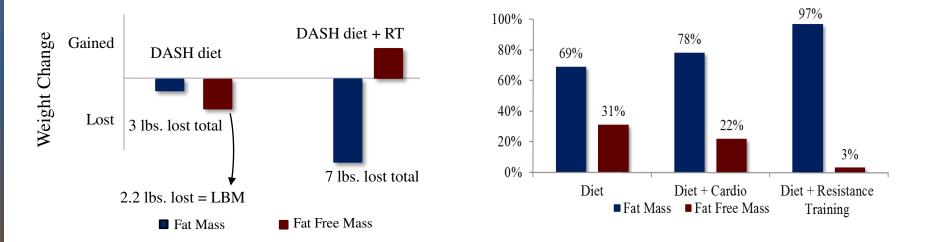
Exercise	Daily Intake	Exercise	Daily Intake
General adult	3-to-5 grams / Kg BW	Endurance Training (1-to-3 hours/session)	6-to-10 grams / Kg BW
Moderate Exercise (60-to-90 min/session)	5-to-7 grams / Kg BW	Extreme Endurance (> 4-to-5 hours/session	8-to-12 grams / Kg BW

Reference: Burke LM, Hawley JA, Wong SHS, and Jeukendrup AE, (2011). Carbohydrates for training and competition. *Journal of Sport Sciences*, 29(Supp 1):S25-27.

Position Statements – Quantity (Complied from AND, JDC, ACSM, NSCA, ISSN):

Activity Level	Type of Exercise	Protein Needs	
		(g/kg BW)	(g/lb. BW)
None	N/A	RDA (0.8g/kg)	RDA (0.36g/lb.)
Light-to-moderate	Cardiopulmonary Training	1.2-to-1.4g/Kg	0.55-to-0.64g/lb.
Light-to-moderate	Resistance Training	1.5-to-2.0g/Kg	0.68-to-0.91g/lb.
Moderate-to-vigorous	Endurance Training*	1.5-to-2.0g/Kg	0.68-to-0.91g/lb.
Moderate-to-vigorous	Resistance Training	1.7-to-2.2g/Kg	0.77-to-1.00g/lb.

* Sport-specific training or > 10 hours of vigorous weekly exercise.


Reference: Pencharz PB, Elango R, and Wolfe RR, (2016). Recent developments in understanding protein needs - How much and what kind should we eat? *Applied Physiology, Nutrition, and Metabolism*, 41(5):577-580. doi:10.1139/apnm-2015-0549.

Weight Loss and Body Composition Change ...

Diet (alone) v. Diet + Resistance Training

- Dash diet v. DASH + moderate intensity resistance training
 - o 10-weeks, 40-min x 3 (non-consecutive) days/week.
 - Machine-based with 6 UE-LE exercises 1-sec concentric; 2-to-3-sec eccentric phase.

- 1. Avila JJ, Gutierres JA., Sheehy ME, et al., (2010). Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults. *European Journal of Applied Physiology*, 109(3):517–525.
- 2. Stiegler, P., Cunliffe, A. (2006). The Role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. *Sports Medicine*, 36(3):239-263.

Weight Loss and Body Composition Change ...

Low Energy Availability In Athletes

Energy availability (EA): Amount of dietary energy available to sustain physiological function after subtracting the energy cost of exercise.

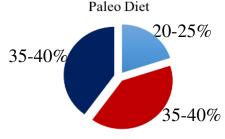
- Insufficient EA, often attributed to increased exercise, reduced energy intake, or some combination = physiological disruptions
- Often evident in female athlete triad and RED-S.

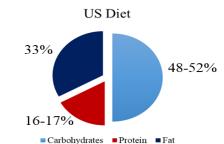
<u>Total Energy Intake – Exercise Energy Expenditure</u>

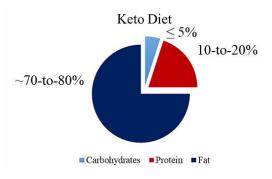
Fat-free Mass (kg)

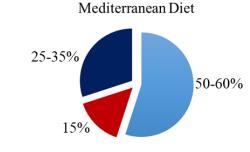
Score	Male	Female	Notes
High	> 40	> 45	Maintenance or weight gain
Optimal	40	45	Maintenance and normal physiological function
Sub-optimal	30-to-40	30-to-45	Suggested for short-term weight loss
Clinical	< 30	< 30	Unhealthy – potential physiological impairments

- Logue D, Madigan SM, Delahunt E, et al., (2018). Low energy availability in athletes: A review of prevalence, dietary patterns, ⁴ physiological health, and sports performance. *Sports Medicine*, 48(1):73-96.
- Areta JL, Taylor HL, and Koehler K, (2021). Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. *European Journal of Applied Physiology*, 121(1):1-21.


Various Diet Categories


- Ketogenic or very low-carbohydrate diet (VLCD)
- Low-to-moderate carbohydrate diets
- Low energy / high protein aka protein-sparing
- Low fat diets
- Fasting-type schedules (e.g., 5:2 schedule)
- Time-restricted feeding schedules


Selection Criteria:


- Popularity
- Available scientific literature

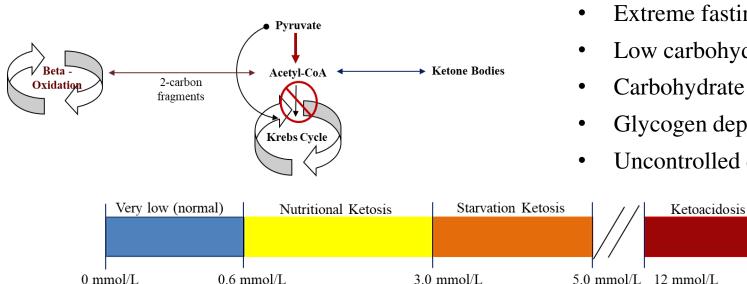
■Carbohydrates ■Protein ■Fat

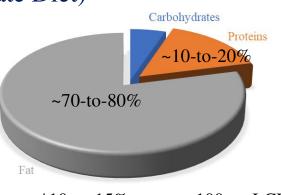
Carbohydrates Protein Fat

Exercise Definitions

Exercise	Low Intensity	Moderate Intensity	High Intensity
	(e.g., SS)	(e.g., MICT)	(e.g., HIIT, SIT)
Cardio	< 45% VO ₂ max	Up to 64% VO ₂ max	≥ 65% VO ₂ max
	or	or	or
	< 65% MHR	Up to 75% MHR	Up to 95% MHR
	or	or	or
	< 11 RPE	12-13 (RPE)	16-17 (RPE)

Exercise	Low Intensity	Moderate Intensity	High Intensity
Resistance Training	< 50% 1RM	50-to-70% 1RM	to 85% 1RM
	(21-to-25 reps to POF)	(12-to-20 to POF)	(5-to-11 to POF)


Reference: Liguori G, and American College of Sports Medicine (2021) *ACSM's Guidelines for Exercise Testing and Prescription (11th ed.).* Philadelphia, PA. Wolters Kluwer



Ketogenic Diet (Very Low Carbohydrate Diet)

Diet:

- Traditional Keto diet:
 - \leq 5% carbohydrates (\leq 50g).* Ο
 - Current adult RDA for carbohydrates = 130g0
- What are Ketones:
 - Incompletely metabolized fat fragments formed in liver. Ο
 - 150g+ produced daily (2-to-6% of TEE). Ο

*10-to-15% or up to 100g = LCD

25 mmol/L

Key Events:

- Extreme fasting or starvation.
- Low carbohydrate diets.
- Carbohydrate restriction
- Glycogen depletion.
- Uncontrolled diabetes.

Ketogenic Diet (Very Low Carbohydrate Diet)

Concerns/Comments:

- Weight loss attributed to reduced kcal intake (300-to-600 kcal less).
- Adherence.
- Keto flu (1st 1-to-2 weeks to 1-month)
- Muscle loss (long-term)

Exercise:

Exercise Type	Low	Moderate	High
Cardiovascular	****	**	Not Rx
Resistance Training	****	***	*

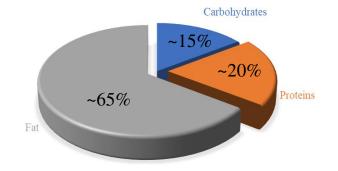
- Some glycogen-sparing for low-to-moderate intensities (< 60%VO₂max).
- RT performance not impacted to same degree given anaerobic nature.

- 1. Brinkworth GD, Noakes M, Buckley JD, et al., (2009). Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. *American Journal of Clinical Nutrition*, 90(1):23-32.
- 2. Foster GD, Wyatt HR, and Hill JO, (2010). Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: A randomized trial. *Annals of Internal Medicine*, 153(3):147-157.

Ketogenic Diet (Very Low Carbohydrate Diet)

Exercise (Cont.):

- Rx:
 - Reduce overall training intensity.
 - Reduce total training volume (over time, not per session).
 - Longer recovery periods needed for moderate-to-vigorous intensities:
 - Between sets (phosphagen recovery).
 - Between workouts.


- 1. Burke LM, Ross ML, and Garvican-Lewis LA, (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. *The Journal of Physiology*, 595(9):2785-2807.
- 2. Vargas-Molina S, Petro JL, Romance R, et al., (2020). Effects of a ketogenic diet on body composition and strength in trained women. *Journal of the International Society of Sports Nutrition*, 17: 19. https://doi.org/10.1186/s12970-020-00348-7

Modified Ketogenic Diet (Moderate Ketogenic or Low Carbohydrate Diet)

Diet:

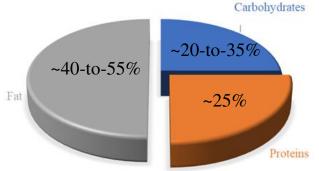
Increased carbohydrate intake to >100g.
 Exercise:

Exercise Type	Low	Moderate	High
Cardiovascular	****	***	Not Rx
Resistance Training	****	****	**

References:

1. Brinkworth GD, Noakes M, Buckley JD, et al., (2009). Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. *American Journal of Clinical Nutrition*, 90(1):23-32.

Low-to-Moderate Carbohydrate Diets


Diet:

• Carbohydrates = 20-to-35%

Concerns/Comments:

- Effective for weight loss = reduced kcal intake.
- Reduced side effects associated with keto-type diets.
- Positive impact on insulin sensitivity and HbA1C levels.
- Possible long-term adherence issues with lower carbohydrate intakes. Exercise:
- Carbohydrate intake sustainable for most exercise enthusiasts < 90-min.
- Insufficient for longer-duration or higher-intensity cardio or for multiple sessions (2-a-days).

- 1. Cook C, and Haub MD, (2007). Low-carbohydrate diets and performance. Current Sports Medicine Reports, 6(40):225-229.
- Skein M, Duffield R, Kelly BT, and Marino FE, (2012). The effects of carbohydrate intake and muscle glycogen content on self-paced intermittent-sprint exercise despite no knowledge of carbohydrate manipulation. *European Journal of Applied Physiology*, 112(8):2859-2870.
- 3. Wang LL, Wang Q, Hong Y, et al., (2018). The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. *Nutrients*, 10(6):661

Low-to-Moderate Carbohydrate Diets

Exercise (Cont.):

- Monitor high-volume and high-intensity RT.
- Select alternate training days allow adequate recovery between sessions.
- Example:
 - \circ 25% CHO intake on 2,400 kcal = 600 kcal or 150g (carbohydrate RDA = 130g)
 - Almost aligns with current USDA 2018 Physical Activity Guidelines:
 - Perform muscle-strengthening activities involving all major muscle groups ≥ 2 days/week.

	Exercise Type	Low	Moder	ate	High	
	Cardiovascular	****	***	٢	*	
	Resistance Training	****	***	*	**	
Tra	Aditional Keto (5% CHO)	 odified Keto- -to-15% CHO)		Lo	w-to-Moderate ((20-to-35% CHO)	СНО
Cardio RT:	Moderate: ★★ Moderate: ★★★	 Noderate: $\star \star \star$			Moderate: ★★ Moderate: ★★	

Low-energy Diets (High Protein – Protein Sparing)

Diet:

- Approx 800-to-1,200 kcal (VLCD = 400-to-800 kcal) below 1,200 / 1,500 kcal Rx thresholds.
- Macronutrients:
 - o 70-to-100g protein.
 - < 100g CHO.*
- Accelerated weight loss (short-term only 8-to-12 weeks) sustained use = metabolic suppression.

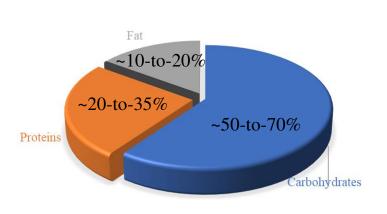
Concerns/Comments:

- LEA and metabolic suppression.
- Muscle loss reduced when paired with RT.

References:

- 1. Brown A, and Leeds AR, (2019). Very low-energy and low-energy formula diets: Effects on weight loss, obesity co-morbidities and type 2 diabetes remission an update on the evidence for their use in clinical practice. *Nutrition Bulletin*, 44(1):7-24.
- Seimon RV, Wild-Taylor AL, Keating SE, et al., (2019). Effect of weight loss via severe vs moderate energy restriction on lean mass and body composition among postmenopausal women with obesity: The TEMPO diet randomized clinical trial. *Journal of the American Medical Association Network Open*, 2(10):e1913733. doi:10.1001/jamanetworkopen.2019.13733

*Current adult RDA for carbohydrates – 130g


Low-energy Diets (High Protein – Protein Sparing)

Exercise:

Exercise Type	Low	Moderate	High
Cardiovascular	**	Not Rx	Not Rx
Resistance Training	**	Not Rx	Not Rx

- Exercise and intensity and duration = significant negative impact.
- Exercise frequency / volume:
 - \circ 10-to-20% kcal deficit, reduce weekly exercise volume ~10-to-15%.
 - o 20-to-30% kcal deficit, reduce weekly exercise volume 16-to-25%.
 - o 30-to-40% kcal deficit, reduce weekly exercise volume 25-to-40%.
 - 40%+ kcal deficit, reduce weekly exercise volume 50-to-60% (medically supervised).
- Gauge volume reduction off recovery (e.g., RHR, HRV).

Diet:

• Focus on healthy carbohydrates.

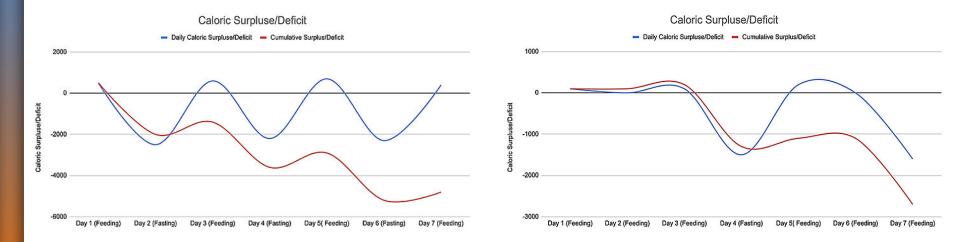
Concerns/Comments:

- Can improve many health metrics.
- Emphasis on vegetable sources may compromise protein quality and quantity.

Low Fat Diets

- Concern over fat soluble vitamin intake and steroid hormone production. Exercise:
- No real limitations possible exception = impaired muscle protein synthesis.

Exercise Type	Low	Moderate	High
Cardiovascular	****	****	****
Resistance Training	****	****	****



Fasting-Type Schedules: ADF and 5:2

Diet:

• Many variations – emphasis on timing, not food choices.

Туре	Characteristics
Traditional Alternate Day Fasting (ADF)	24-hour cycles of feeding-fasting with no compensatory /binge eating
5:2 Fasting Schedule (Michael Mosely, Kate Harrison)	2 non-consecutive partially fasted days. Kcal reduced to 20-to-25% of normal = 500-to-600 kcal over 3-to-4 meals (can be any kcal)

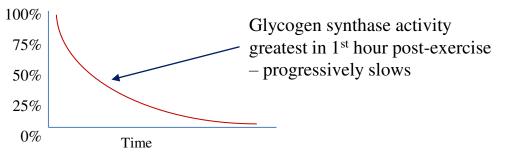
Fasting-Type Schedules: ADF and 5:2

ADF Diet:

- Effective weight loss plan comparable results to 25% daily caloric restriction.
- Health promoting effects (e.g., insulin sensitivity).
- ADF advantage (v. starvation-type diets) = greater hormonal stability:
 - Short term kcal undulation = smaller effect on chronic elevation of cortisol.
 - Cortisol suppresses TSH and metabolism.

ADF Concerns:

- Muscle protein degradation (MPD):
 - Body requires continual protein feeding every 3-to-4 hours = (4 feedings per day).
 - *Dosage:* 0.25-to-0.4 g/Kg (0.11-to-0.18g/lb.) per feeding = 20-to-40g.
- Diet not ideal for athlete / individuals seeking muscular development.


- 1. Akasheh RT, Kroeger CM, and Trepanowski JF, (2020). Weight loss efficacy of alternate day fasting versus daily calorie restriction in subjects with subclinical hypothyroidism: a secondary analysis. *Applied Physiology Nutrition Metabolism*, 45(3):340-343.
- 2. Aragon A, and Schoenfeld BJ, (2020). How much protein can the body use in a single meal for muscle building? Implications for total protein distribution. *Journal of the International Society of Sports Nutrition*, 15(1).
- 3. Kerksick CM, Arent S, Schoenfeld BJ, et al., (2017). International Society of Sports Nutrition position stand: nutrient timing. *Journal of the International Society of Sports Nutrition*, 14:33.

Fasting-Type Schedules: ADF and 5:2

ADF and Exercise:

- Synchronize with diet:
 - Moderate cardio and RT on eating days, offload on fasting days.
 - Long-duration cardio ONLY following eating days (need minimum 4-to-6 hours post-training for glycogen resynthesis).
 - Offload or restorative days with fasting.
 - Synchronizing ADF with endurance training shows improvements CHO undulation increases muscle/live glycogen storage capacity.
- Issue: Limited to 3-to-4 training sessions/week.
- Issue: Slower recovery.

- 1. Jager R, Kerksick CM, Campbell BI, et al., (2017). International Society of Sports Nutrition Position Stand: protein and exercise. *Journal of the International Society of Sports Nutrition*, 4, 20. https://doi.org/10.1186/s12970-017-0177-8.
- 2. Aird TP, Davies RW, and Carson BP, (2018). Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: A systematic review and meta-analysis. *Scandinavian Journal of Medicine and Science in Sports*, 28(5):1476-1493.

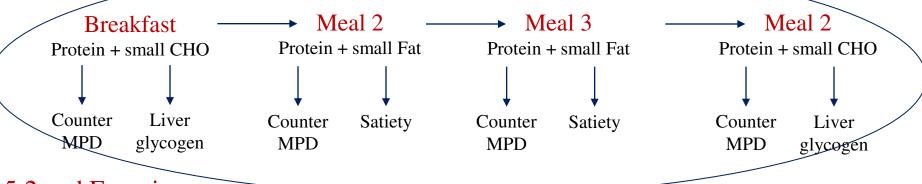
Fasting-Type Schedules: ADF and 5:2

ADF and Exercise (Cont.):

Exercise Type	Low	Moderate	High
Cardiovascular	****	***	Not Rx with fasting
Resistance Training	****	***	Not Rx with fasting

5:2 Diet:

- <u>Original:</u> 2 non-consecutive partially fasted days with 20-to-25% kcal reduction over 3-to-4 meals.
- <u>Modified:</u> 1-to-2 non-consecutive partially fasted days with 20-to-50% kcal reduction over 3-to-4 meals *progressive approach*.
- Comparable (slightly less) results to ADF and 25% daily caloric restriction.
- Greater adherence and flexibility.
- Health promoting effects (e.g., insulin sensitivity).


Reference: Hajek P, Przulj D, Pesola F, et al., (2021). A randomised controlled trial of the 5:2 diet. PLoS One, 16(11):e0258853.

Fasting-Type Schedules: ADF and 5:2

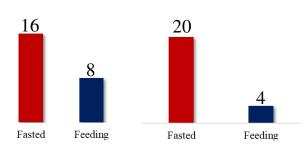
ADF Concerns:

- Muscle protein degradation (MPD):
 - Strategic protein feeding on 1-to-2 fasting days can minimize MPD.
- Strategy:
 - Progress from 50% down to 20-to-25%, 1-day to 2-days.
 - High-protein ($\geq 100g$) and low-carb (< 50g), balance in fat. -

5:2 and Exercise:

Exercise Type	Low	Moderate	High	
Cardiovascular	****	****	Not Rx with fasting	
Resistance Training	****	****	Not Rx with fasting	

Fasting-Type Schedules: TRF

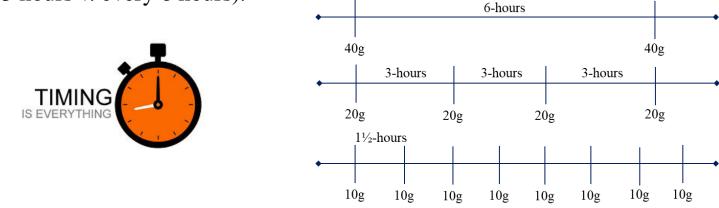

TRF Diet:

- Popularized in fitness 16:8-to-22-2.
- Most derived off 'fasted cardio' concept.

Concerns/Comments:

- TRF in general = many health benefits, but time of day???
- Circadian Rhythm Early-fed TRF v. early fast TRF:

Early-fed TRF (e.g., 7am – 3pm)	Early-fast TRF (e.g., 12pm – 8pm)	Melatonin Cortisol
 Aligns with natural circadian rhythms = better appetite control throughout day + reduced caloric intake. Improved fat oxidation throughout day. Lower insulin levels Improved insulin sensitivity. Lowered blood pressure. 	 Higher ghrelin levels throughout day. Elevated postprandial (lunch) glucose and insulin levels – insulin inhibits fat metabolism. Reduced muscle protein synthesis (MPS) rates throughout the day. 	Noon 6pm Midnight 6am Noon



Nutrient Timing: Protein

Compare muscle protein rates over a 12-hour period with whey protein:

- 4x20g servings was superior v. 2x40g or 8x10g spread evenly over day.
 - Results:
 - 10g servings failed to reach LT (threshold) did not stimulate MPS optimally.
 - 20g and 40g reached threshold, but 4-servings did so more frequently (i.e., every 3 hours v. every 6 hours).

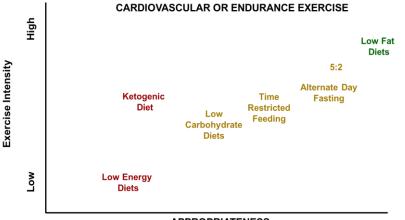
- 1. Areta JL, Burke LM, Ross ML, et al., (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. *The Journal of Physiology*, 591(Pt 9):2319-2331. doi:10.1113/jphysiol.2012.244897.
- 2. Schoenfeld BJ, Aragon AA, and Krieger JW, (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. *Journal of the International Society of Sports Nutrition*, 10(1):53. doi:10.1186/1550-2783-10-53.
- 3. Mamerow MM, Mettler JA, English KL, et al., (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. *Journal of Nutrition*, 144(6): 876-880.

Fasting-Type Schedules: TRF

TRF and Exercise:

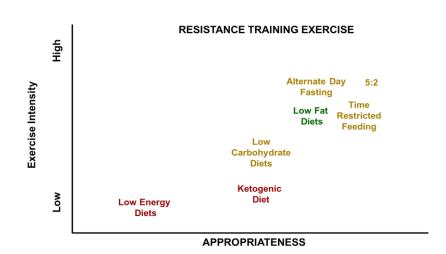
Exercise Type	Low Intensity	Moderate Intensity	High Intensity (8-hour)	High Intensity (4-hour) *	High Intensity (2-hour) **
Cardiovascular	****	****	***	***	*
Resistance Training	****	****	***	**	*

* Reduce volume


** Greatly reduce volume

- 1. Queiroz JDN, Macedo RCO, Tinsley GM, and Reischak-Oliveira A, (2021). Time-restricted eating and circadian rhythms: the biological clock is ticking. *Critical Reviews in Food Science and Nutrition*, 61(17):2863-2875.
- 2. Adafer R, Messaadi W, Meddahi M, et al., (2020). Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating's Effects on Human Health. *Nutrients*, 12(12):3770.
- 3. Sutton EF, Beyl R, Early KS, et al., (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. *Cell Metabolism*, 27(6):1212-1221.

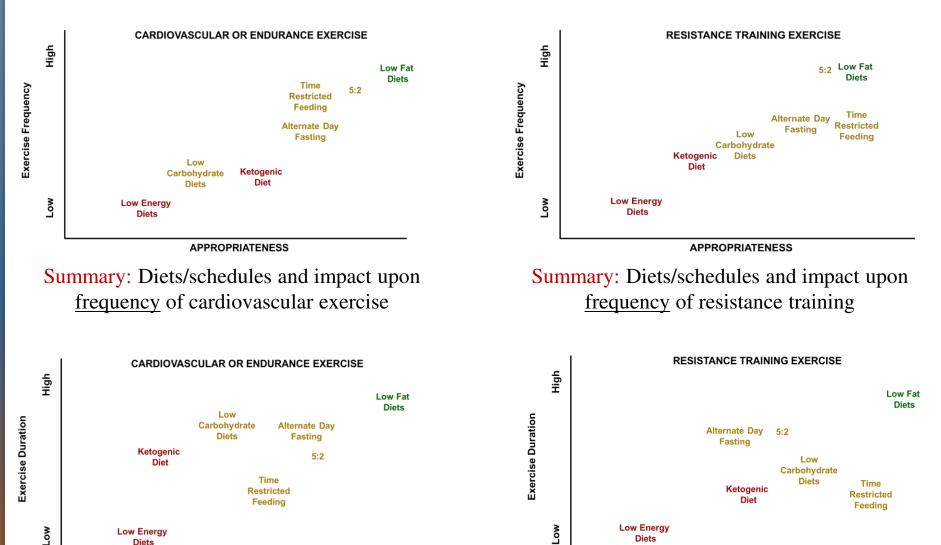
Summarizing – Takeaways ...



	Higher Intensity	Longer Duration	Greater Frequency
Cardiovascular Endurance	Low Fat Diets	Low Fat Diets	Low Fat Diets
	5-2	5-2	5-2
	Alternate Day Fasting	Alternate Day Fasting	Time Restricted Feeding
Resistance Exercise	5:2	Low Fat Diets	Low Fat Diet
	Alternate Day Fasting	5:2	5-2
	Time Restricted Feeding	Time Restricted Feeding	Time Restricted Feeding

APPROPRIATENESS

Summary: Diets/schedules and impact upon intensity of cardiovascular exercise



Summary: Diets/schedules and impact upon <u>intensity</u> of resistance training

Green – high carbohydrates Red – restricted carbohydrates/energy

Summarizing – Takeaways ...

APPROPRIATENESS

Summary: Diets/schedules and impact upon <u>duration</u> of cardiovascular exercise Summary: Diets/schedules and impact upon <u>duration</u> of resistance training

APPROPRIATENESS

Thank You..!!

For Your Commitment to Excellence

Name: Fabio Comana, MA., MS.

Credentials: NASM CPT, CES, PES, CNC, CSNC & CWC; ACE CPT & HC; ACSM EP-C; CSCS; CISSN

Email: comana.fabio@gmail.com

